Existence of chaos for partial difference equations via tangent and cotangent functions
نویسندگان
چکیده
Abstract This paper is concerned with the existence of chaos for a type partial difference equations. We establish four chaotification schemes equations tangent and cotangent functions, in which systems are shown to be chaotic sense Li–Yorke or both Devaney. For illustration, we provide three examples provided.
منابع مشابه
Continued fraction expansions for q-tangent and q-cotangent functions
1 Philippe Flajolet and continued fractions In a paper that was written on the occasion of Philippe Flajolet’s 50th birthday [26] and discussed his various research areas, we wrote about his contributions to continued fractions: Continued fractions The papers [8, 9, 10] deal with the interplay of continued fractions and combinatorics. Let us consider lattice paths, consisting of steps NORTHEAST...
متن کاملTangent and Cotangent Bundles
of subsets of TM: Note that i) 8 (p;Xp) 2 TM , as p 2M ) there exists (U ; ) 2 S such that p 2 U ; i.e. (p;Xp) 2 TU , and we have TU = 1 (R) 2 : ii) If we de ne F : TpM ! R by F (Xp) = (Xp(x); Xp(x); :::::; Xp(x)) where x; x; ::::; x are local coordinates on (U ; ), then clearly F is an isomorphism, so (p; Xp) = ( (p); F ( Xp)); and 1 = ( 1 ; F 1 ): Now take 1 (U); 1 (V ) 2 and suppos...
متن کاملTangent and Cotangent Bundles
i) 8 (p;Xp) 2 TM , as p 2M ) there exists (U ; ) 2 S such that p 2 U ; i.e. (p;Xp) 2 TU , and we have TU = 1 (R) 2 . ii) If we de ne F : TpM ! R by F (Xp) = (Xp(x); Xp(x); :::::; Xp(x)) where x; x; ::::; x are local coordinates on (U ; ), then clearly F is an isomorphism, so (p; Xp) = ( (p); F ( Xp)); and 1 = ( 1 ; F 1 ). Now take 1 (U); 1 (V ) 2 and suppose (p; Xp) 2 1 (U)\ 1 (V ...
متن کاملExistence of Positive Solutions for Certain Partial Difference Equations
where Pm,n > 0 onN 0 , k, l ∈N0,Ni = {i, i+1, . . .} and i is an arbitrary integer. Throughout this paper, we assume that a, b, c, d are positive constants. A double sequence {Am,n} is said to be a solution of (1.1) if it satisfies (1.1) form≥m0, n≥ n0. A solution {Ai, j} of (1.1) is said to be eventually positive if Ai, j > 0 for all large i and j, and eventually negative if Ai, j < 0 for all ...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2021
ISSN: ['1687-1839', '1687-1847']
DOI: https://doi.org/10.1186/s13662-020-03162-2